Directory

How to Resolve Ambiguity and Anaphora in Natural Language Search

What are the most effective methods for resolving ambiguity and anaphora in natural language search?

Powered by AI and the LinkedIn community

Natural language processing and understanding (NLP and NLU) are essential for building effective search engines that can handle complex user queries. However, natural language is often ambiguous and anaphoric, meaning that the same word or phrase can have different meanings or refer to different entities depending on the context. How can search engines resolve these challenges and provide relevant and accurate results? In this article, we will explore some of the most effective methods for resolving ambiguity and anaphora in natural language search.

Rate this article

We created this article with the help of AI. What do you think of it?
Report this article

More relevant reading