Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2020, Land
…
38 pages
1 file
Location-specific forms of agroforestry management can reduce problems in the forest–water–people nexus, by balancing upstream and downstream interests, but social and ecological finetuning is needed. New ways of achieving shared understanding of the underlying ecological and social-ecological relations is needed to adapt and contextualize generic solutions. Addressing these challenges between thirteen cases of tropical agroforestry scenario development across three continents requires exploration of generic aspects of issues, knowledge and participative approaches. Participative projects with local stakeholders increasingly use ‘serious gaming’. Although helpful, serious games so far (1) appear to be ad hoc, case dependent, with poorly defined extrapolation domains, (2) require heavy research investment, (3) have untested cultural limitations and (4) lack clarity on where and how they can be used in policy making. We classify the main forest–water–people nexus issues and the types ...
Sustainability Science
The expansion and intensification of agriculture as well as the associated land clearing are threatening both biodiversity and human wellbeing in tropical areas. Implementing agroforestry systems through a landscape approach has a strong potential for integrating nature conservation objectives into agricultural systems. A key challenge for implementing the landscape approach is that political processes and conservation initiatives operate in 'silos', being largely disconnected from farmers and local key agents responsible for tree governance. In this study we brought together different stakeholders in facilitated, structured focus discussions to analyse the role of actor groups in tree governance. We used social network analysis to quantitatively and qualitatively analyse agroforestry governance networks and actor interactions related to information exchange, finance flows, and regulation. The analyses were conducted at national, sub-national and local levels in four countries: Honduras, Peru, Indonesia, and Uganda. Using trees on farms as a boundary object enabled all participants to bridge common interests and illuminate some of the constraints and opportunities of local governance systems while overcoming institutional and ideological barriers. The quantitative results of the social network analysis identify a strong density of actor linkages. Despite this density, results indicate incoherent and fragmented actor networks undermining the support for agroforestry on all levels. Nevertheless, existing processes related to finance, information, and regulation can be better aligned to ensure an effective implementation and mainstreaming of agroforestry for biodiversity conservation. Building social capital among key actors on both national and local levels can reveal a strong potential for adaptive learning processes mainstreaming agroforestry as essential component of "good farming" and integrating incentive systems for a coherent and effective agroforestry governance. We conclude that redirecting both public and private funding towards continuous seed-funding for the facilitation of these integrated learning processes can transform landscape management and at the same time reduce transaction costs.
Land
Agroforestry as active area of multi-, inter-, and transdisciplinary research aims to bridge several artificial divides that have respectable historical roots but hinder progress toward sustainable development goals. These include: (1) The segregation of “forestry trees” and “agricultural crops”, ignoring the continuity in functional properties and functions; the farm-scale “Agroforestry-1” concept seeks to reconnect perennial and annual, woody and nonwoody plants across the forest–agriculture divide to markets for inputs and outputs. (2) The identification of agriculture with provisioning services and the assumed monopoly of forests on other ecosystem services (including hydrology, carbon storage, biodiversity conservation) in the landscape, challenged by the opportunity of “integrated” solutions at landscape scale as the “Agroforestry-2” concept explores. (3) The gaps among local knowledge of farmers/agroforesters as landscape managers, the contributions of social and ecological s...
LAND, 2020
Integrated landscape approaches have been identified as key to addressing competing social, ecological, economic, and political contexts and needs in landscapes as a means to improve and preserve agrobiodiversity. Despite the consistent calls to integrate traditional and local knowledge and a range of stakeholders in the process of developing integrated landscape approaches, there continues to be a disconnect between international agreements, national policies, and local grassroots initiatives. This case study explores an approach to address such challenges through true transdisciplinary and multi-stakeholder research and outreach to develop solutions for integrated landscapes that value and include the experience and knowledge of local communities and farmers. Working collaboratively with small-scale agroforestry farmers in Southern Brazil who continue to use traditional agroecological practices to produce erva-mate (Ilex paraguariensis), our transdisciplinary team is working to collect oral histories, document local ecological knowledge, and support farmer-led initiatives to address a range of issues, including profitability, productivity, and legal restrictions on forest use. By leveraging the knowledge across our network, we are developing and testing models to optimize and scale-out agroforestry and silvopastoral systems based on our partners' traditional practices, while also supporting the implementation of approaches that expand forest cover, increase biodiversity, protect and improve ecosystem services, and diversify the agricultural landscape. In so doing, we are developing a strong evidence base that can begin to challenge current environmental policies and commonly held misconceptions that threaten the continuation of traditional agroforestry practices, while also offering locally adapted and realistic models that can be used to diversify the agricultural landscape in Southern Brazil.
Agroforestry Systems, 2021
Social innovation is critical in shaping human-forest relationships and how farmers and scientists engage with each other to design sustainability transitions. This paper reports on the outputs of a participatory stakeholders’ engagement platform that was designed to draw on local farmers’ knowledge and experience in identifying sustainable pathways for the development of multi-functional agroforestry in Guadeloupe. Two participatory workshops were organised that aimed to gain insights into the reality faced by farmers, in particular: (i) their vision of the future, needs and aspirations; (ii) their understanding of barriers and enablers in relation to the sustainability challenges they are confronted with and; (iii) their framing of human–environment relationships in socio-ecological systems. Outputs of the activities were synthetized by the research team and represented graphically for analysis. Results show that while farmers envision prosperous multifunctional forest farms in th...
During the first half of the 21st century, socioeconomic development is expected to contribute faster and to a greater extent to global water stress than climate change. Consequently, we aimed to identify conditions that can facilitate local adaptation planning for future water security, accounting for the socio-institutional context, developmental needs, and interests affecting water use and management. Our study focused on three forest landscapes in Latin America where water stress was identified as a current concern potentially leading to future social conflict if not addressed. In the three sites, we adopted a participatory approach to implement a systematic diagnostic framework for the analysis of socio-institutional barriers and opportunities influencing local adaptation decision making. This novel application enabled science-society engagement in which civil society organizations were coleading the research. The field methods we used involved participatory social network mapping, semistructured interviews, and validation workshops. Our study generated insights into several interventions that could help overcome barriers affecting the adaptation decision-making process, particularly in the diagnosis and early planning phases. Points of intervention included fostering local participation and dialogue to facilitate coproduction of knowledge, and strengthening the role of key central actors in the water governance networks. These key actors are currently bridging multiple interests, information sources, and governance levels, and thus, they could become agents of change that facilitate local adaptation processes. Working jointly with civil society to frame the research proved effective to increase awareness about water issues, which related not only to the technological, economic, and political aspects of water, but also to organizational processes. The involvement of civil society created genuine interest in building further capacity for climate adaptation and water security.
Land
Restoration depends on purpose and context. At the core it entails innovation to halt ongoing and reverse past degradation. It aims for increased functionality, not necessarily recovering past system states. Location-specific interventions in social-ecological systems reducing proximate pressures, need to synergize with transforming generic drivers of unsustainable land use. After reviewing pantropical international research on forests, trees, and agroforestry, we developed an options-by-context typology. Four intensities of land restoration interact: R.I. Ecological intensification within a land use system, R.II. Recovery/regeneration, within a local social-ecological system, R.III. Reparation/recuperation, requiring a national policy context, R.IV. Remediation, requiring international support and investment. Relevant interventions start from core values of human identity while addressing five potential bottlenecks: Rights, Know-how, Markets (inputs, outputs, credit), Local Ecosyst...
2018
Subsistence systems adjoining tropical forests have large environmental impacts due to continued expansion into these forests through slash and burn. Finding solutions for this problem requires understanding how subsistence farmers operate and what possible alternatives are available to them. Understanding the social household system, the socio-economic drivers and the impact of various current and alternative agronomic practices at present and under climate change, requires bringing people together through a transdisciplinary approach. The World Bank has initiated the LAUREL program to support integrated decision making for landscape management across sectors and levels of government by promoting improved tools for land use planning. These will result in more evidence-based decision making around long-term sustainable land use, which in turn should result in improved resilience and the ability of landscapes to deliver ecosystem services in general and development benefits specifica...
IOP Conference Series: Earth and Environmental Science
Agroforestry, as platform for harmonizing agriculture and forestry in their interactions with landscapes and rural and peri(urban) livelihoods, offers opportunities to benefit from synergies across sustainable development goals (SDGs), and deal with the unavoidable tradeoffs. Such synergy, however, may only emerge if site-specific analysis of the multiple functions of landscapes leads to a shared understanding among stakeholders, clear commitment to common goals, effective means of implementation and a system that remains open to innovation by monitoring functions rather than form, and regularly re-evaluates effectiveness of policy instruments.
Natural resource management research has to evolve from a focus on plans, maps, and regulations to an acknowledgment of the complex, sometimes chaotic, reality in the field, with a large number of actors making their own decisions. As outside actors, we can only try to facilitate and support a process of negotiation among the stakeholders. Such negotiation involves understanding the perspectives of all stakeholders, analyzing complementarities in views, identifying where differences may be settled by "science," where science and social action can bring innovative alternatives for reconciliation, and where compromises will be necessary to move ahead. We distinguish between natural resource management problems at village level, within country, or transboundary, and those that relate local stakeholder decisions to global issues such as biodiversity conservation. Tree-based systems at plot or landscape level can minimize conflicts between private and public interests in local environmental services, but spatial segregation of functions is an imperative for the core of global biodiversity values. The complex agroforests developed by farmers as alternatives to food-crop-based agriculture integrate local and global environmental functions, but intensification and specialization may diminish these non-local values. For local biodiversity functions, a medium-intensity "integrate" option such as agroforests may be superior in terms of resilience and risk management. Major options exist for increasing carbon stocks by expanding tree-based production systems on grasslands and in degraded watersheds through a coherent approach to the market, policy, and institutional bottlenecks to application of existing rehabilitation technologies. Agroforestry mosaics may be an acceptable replacement of forests in upper watersheds, provided they evolve into multistrata systems with a protective litter layer. Challenges to INRM research remain: how should the opportunities for adaptive response among diverse interest groups, at a number of hierarchical levels, be included in the assessment of impacts on the livelihoods of rural people?
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.