Papers by Scirp Math-Physics
The De Broglie’s approach to the quantum theory, when combined with the conservation rule of mome... more The De Broglie’s approach to the quantum theory, when combined with the conservation rule of momentum, allows one to calculate the velocity of the electron transition from a quantum state n to its neighbouring state as a function of n. The paper shows, for the case of the harmonic oscillator taken as an example, that the De Broglie’s dependence of the transition velocity on n is equal to the n-dependence of that velocity calculated with the aid of the uncertainty principle for the energy and time. In the next step the minimal distance parameter provided by the uncertainty principle is applied in calculating the magnetic moment of the electron which effectuates its orbital motion in the magnetic field. This application gives readily the electron spin magnetic moment as well as the quantum of the magnetic flux known in superconductors as its result.
In this paper, the effect of initial stress on the radial vibrations of elastic hollow cylinder w... more In this paper, the effect of initial stress on the radial vibrations of elastic hollow cylinder with rotation is discussed. The one-dimensional equation of elastodynamic is solved in terms of radial displacement. The frequency equation is obtained when the boundaries are free; fixed and mixed boundary condition is examined numerically. The determination is concerned with the eigenvalues of the natural frequency of the radial vibrations in the case of harmonic vibrations. The effect of rotation and initial stress on the natural frequencies was examined. It was shown that the dispersion curves of guided waves were significantly influenced by the rotation and initial stress of the elastic cylinder. Numerical results are given and illustrated graphically for each case considered. The results indicate that the effect of rotation and initial stress are very pronounced.
The literature reports that equality of temperature, equality of potential and equality of pressu... more The literature reports that equality of temperature, equality of potential and equality of pressure between a system and a reservoir are necessary conditions for the stable equilibrium of the system-reservoir composite or, in the opposite and equivalent logical inference, that stable equilibrium is a sufficient condition for equality. The aim and the first novelty of the present study is to prove that equality of temperature, potential and pressure is also a sufficient condition for stable equilibrium, in addition to necessity, implying that stable equilibrium is a condition also necessary, in addition to sufficiency, for equality. The second novelty is that the proof of the sufficiency of equality (or the necessity of stable equilibrium) is attained by means of the generalization of the entropy property, derived from the generalization of exergy property, which is used to demonstrate that stable equilibrium is a logical consequence of equality of generalized potential. This proof is underpinned by the Second Law statement and the Maximum-Entropy Principle based on generalized entropy which depends on temperature, potential and pressure of the reservoir. The conclusion, based on these two novel concepts, consists of the theorem of necessity and sufficiency of stable equilibrium for equality of generalized potentials within a composite constituted by a system and a reservoir.
A Weis-Fogh mechanism wave power generation system is designed, its physical model and mathematic... more A Weis-Fogh mechanism wave power generation system is designed, its physical model and mathematical model are discussed, and the component expressions of fluid dynamic expression are derived. Adopting numerical integral algorithm, the work done by fluid force acting on wing is calculated.
During a dive peregrine falcons can reach velocities of more than 320 km/h and makes themselves t... more During a dive peregrine falcons can reach velocities of more than 320 km/h and makes themselves the fastest animals in the world. The aerodynamic mechanisms involved are not fully understood yet and the search for a conclusive answer to this fact motivates the three-dimensional (3-D) flow study. Especially the cupped wing configuration which is a unique feature of the wing shape in falcon peregrine dive is our focus herein. In particular, the flow in the gap between the main body and the cupped wing is studied to understand how this flow interacts with the body and to what extend it affects the integral forces of lift and drag. Characteristic shapes of the wings while diving are studied with regard to their aerodynamics using computational fluid dynamics (CFD). The results of the numerical simulations via ICEM CFD and OpenFOAM show predominant flow structures around the body surface and in the wake of the falcon model such as a pair of body vortices and tip vortices. The drag for the cupped wing profile is reduced in relation to the configuration of opened wings (without cupped-like profile) while lift is increased. The purpose of this study is primarily the basic research of the aerodynamic mechanisms during the falcon’s diving flight. The results could be important for maintaining good maneuverability at high speeds in the aviation sector.
The temperature dependence of the magnetic susceptibility oscillations semiconductors was conside... more The temperature dependence of the magnetic susceptibility oscillations semiconductors was considered in a quantizing magnetic field. With the help of mathematical modeling of the thermal broadening of the energy levels, the temperature dependence of the de Haas-van Alphen effect in quantizing magnetic field was investigated. The influence of temperature on the de Haas-van Alphen with the help of free energy of electrons in semiconductors was determined. Theoretical results of the mathematical simulation were compared with experimental data for bismuth. Using the proposed model of the low-temperature , high-temperature oscillation magnetic susceptibility in semiconductors was calculated.
The generalization of Jeans equation in expanding and rotating Universe is given. We found the ge... more The generalization of Jeans equation in expanding and rotating Universe is given. We found the generalized frequency of baryonic substrate oscillations in the rotating Universe. In doing this, two cases were considered: the generalized wave vector coincides with the Jeans wave vector and second case, when the generalized wave vector tends to zero.
Satellite Laser Ranging (SLR) is a proven space geodetic technique with significant potential for... more Satellite Laser Ranging (SLR) is a proven space geodetic technique with significant potential for important contributions to scientific studies of tectonic motion. Currently, SLR is the most accurate available technique to determine the geocentric position with a reported precision in the order of few millimeters. Data gathered through SLR together with “Short Arc” mathematical algorithm became a highly precise tool to detect, monitor and calculate recent crustal movements through repeated measurements of the baselines between some stations on different tectonic plates. In this paper, the Short Arc mathematical model introduced in a previous paper was used to calculate the length of the baseline between Helwan-SLR station and other four fixed SLR stations, placed on different plates. Application of this model with the data gathered through a 4 year time interval gave repeatable results with very high accuracy (in the order of 4 cm).
In this paper, we proposed new results in quadruple Laplace transform and proved some properties ... more In this paper, we proposed new results in quadruple Laplace transform and proved some properties concerned with quadruple Laplace transform. We also developed some applications based on these results and solved homogeneous as well as non-homogeneous partial differential equations involving four variables. The performance of quadruple Laplace transform is shown to be very encouraging by concrete examples. An elementary table of quadruple Laplace transform is also provided.
Problem: The asymmetrical genesis problem concerns why the universe should have an abundance of m... more Problem: The asymmetrical genesis problem concerns why the universe should have an abundance of matter over antimatter. Purpose: This paper shows how the baryogenesis and leptogenesis asymmetries may both be resolved. Approach: Design methods were used to develop a conceptual mechanics for the remanufacturing processes that transform particles in the decay processes. This was based on the structures for the photon, electron, antielectron, proton and antineutrino as previously identified as logical necessities for the beta decay process, and represented as a non-local hidden-variable design with discrete fields. Findings: The solution is given in terms of a mechanics that defines the transformation of discrete field structures in particles. The genesis problem is shown to be solvable. The mechanics describes pair production of an electron and antielectron from two initial photons, and subsequent remanufacture of the antielectron into a proton. It is predicted that two antineutrinos would be emitted, which are testable and falsifiable. The theory identifies that the role of the antineutrinos is to remove the antimatter handed field structures. The original electron and proton may bond to form a simple hydrogen atom, or combine via electron capture to form a neutron and hence heavier nuclides. The subsequent preponderance of the matter pathways in the genesis production sequence is also addressed and is explained as domain warfare between the matter and antimatter species. Originality: The concept of remanufacture of antielectrons into protons, with emission of antineutrinos, is novel. Extensions of the theory explain the nuclides. Consequently the theory explains from pair production up to nuclear structure, which is also original.
The aim of this paper is to study wavelet frame packets in which there are many frames. It is a g... more The aim of this paper is to study wavelet frame packets in which there are many frames. It is a generalization of wavelet packets. We derive few results on wavelet frame packets and have obtained the corresponding frame bounds.
Scientific Research Publishing
SPH has a reasonable mathematical background. Although VBM and MPS are similar to SPH, their ma-t... more SPH has a reasonable mathematical background. Although VBM and MPS are similar to SPH, their ma-thematical backgrounds seem fragile. VBM has some problems in treating the viscous diffusion of vortices but is known as a practical method for calculating viscous flows. The mathematical background of MPS is also not sufficient. Not with standing, the numerical results seem reasonable in many cases. The problem common in both VBM and MPS is that the space derivatives necessary for calculating viscous diffusion are not estimated reasonably, although the treatment of advection is mathematically correct. This paper discusses a method to estimate the above mentioned problem of how to treat the space derivatives. The numerical results show the comparison among FDM (Finite Difference Method), SPH and MPS in detail. In some cases, there are big differences among them. An extension of SPH is also given.
Scientific Research Publishing
A total sample size consisting of 150 Diabetic male patients has been investigated by ultrasound ... more A total sample size consisting of 150 Diabetic male patients has been investigated by ultrasound system General Electric using gray-scale B-mode imaging with curvilinear transducer 3 MHz to assess the impact of diabetes in kidney morphology and it is distributed in Sudan. The collected data were the patient age, height, weight, kidneys size, ultrasound findings of involved kidneys, and duration of diabetes and residence region. The analyzed data show that the diabetes has been as endemic disease in central Sudan (Khartoum & Jazeera) representing 55% and in the west of Sudan representing 38%. The BMI of diabetic patients has been significantly (R2 = 0.6) decreasing following aging. The kidney size increases significantly as R2 = 0.75 and 0.6 for left and right kidney respectively. Their correlation is fitted in the following equations: y = 3.95x + 27.26 and y = 2.41x + 35.12 for the left and right kidney respectively. The impact of duration was a reduction in size significantly as R2 = 0.61 and 0.55 with a correlation fitted in the following equations: y = ?2.22x + 139.9 and y = ?1.51x + 96.59 for the left and right kidney respectively. The mean kidney length was (14.5 cm) and the renal cortex in the range of 2 - 2.3 cm, the kidneys size were so enlarged as 92.4 ± 11.7 and 121 ± 17.1 for the right and left kidney respectively while in late case of Diabetes, the kidney is more echogenic, atrophied size with loss of corticomedullary differentiation.
The strong Markov process had been obtained by Ray-Knight compacting; its orbit natures are discu... more The strong Markov process had been obtained by Ray-Knight compacting; its orbit natures are discussed; the significance probability of kolmogorov forward and backward equations are explained.
Recently we proposed "a new interpretation of quantum mechanics (called quantum and classical mea... more Recently we proposed "a new interpretation of quantum mechanics (called quantum and classical measurement theory)" in this journal (JQIS: Vol. 1, No. 2), which was characterized as the metaphysical and linguistic turn of quantum mechanics. This turn from physics to language does not only realize the remarkable extension of quantum mechanics but also yield the quantum mechanical world view (i.e., the philosophy of quantum mechanics). And thus, the turn urges us to dream that traditional philosophies (i.e., Parmenides, Plato, Aristotle, Descartes, John Locke, Berkeley, Hume, Kant, Saussure, Wittgenstein, etc.) can be understood in the quantum mechanical world view. This dream will be challenged in this paper. We, of course, know that most scientists are skeptical to philosophy. Still, we can expect that readers find a good linguistic philosophy (i.e. philosophy of language) in quantum mechanics.
Using the BNL Accelerator Test Facility we have shown that a tightly focused laser on a vacuum ca... more Using the BNL Accelerator Test Facility we have shown that a tightly focused laser on a vacuum can accelerate an electron beam in free space. The electron beam had energy of 20 MeV and the CO 2 laser had energy of about 3 Joule. In the readout of the experiment we detect a clear effect for the laser beam off and on. The size of the effect is about 20% and is reproducible over many laser and beam shots. This is a proof of principle and the data are fully consistent with the CAS theory. The results of this experiment may have an impact on the LASER fusion method. 6 off and on. The size of the effect is about 20% and is reproducible over many laser and beam shots. This is a proof of principle and the data are fully consistent with the CAS theory.
Microbiology by Scirp Math-Physics
Comparative analysis of epigenetic alterations between acute and chronic leukemia, with an emphas... more Comparative analysis of epigenetic alterations between acute and chronic leukemia, with an emphasis on histone modifications, was conducted. We focused on the promoter regions of the whole genomes as well as oncogenes. Our results revealed that obvious differential histone modifications pattern existed between the two subtypes. H3K27ac had a high tag density in the promoter region in both Dnd41 cell lines and K562 cell lines. H3K27ac and H3K4me1 had high correlation between the two cell lines of oncogenes. Similar results were also achieved in the promoter region of high expression genes in the Jurkat and K562 cell lines based on RNA-seq data. This suggested that H2K27ac and H3K4me1 were active regulators in leukemia cell lines.
The increasing nitrate concentration in groundwater has become a serious concern all over the wor... more The increasing nitrate concentration in groundwater has become a serious concern all over the world. In this study, the double chamber microbial fuel cell (MFC) and single chamber MFC systems were proposed for simultaneous removal of chemical oxygen demand (COD) and nitrate (NO3- - N). Transforming the various variables (cathod materials, external resistance and initial concentrations of NO3- - N) of double chamber MFC to determine the optimal operating parameters. Observing the treatment effect of single chamber MFC when adding an external resistance. The results showed: in the case of connecting external circuit, the double chamber MFC could reach the best degradation effect of NO3- - N and COD when cathode and anode materials are made of stainless steel velvet, the external resistance of 100 Ω and the initial concentrations of NO3- - N of around 250 mg/L. The best degradation rate of NO3- - N and COD reached 66.88% and 82.85% respectively. Adding an external solar power to single chamber could enhance the treatment effect; specifically, NO3- - N and COD removal rate reached 65.06% and 70.42% respectively, 6.14% and 9.73% higher than without external power.
environmental science by Scirp Math-Physics
This study develops information based on index, and termed hydro-ecological-index, to represent t... more This study develops information based on index, and termed hydro-ecological-index, to represent the need of a riverine ecosystem characterized through a biologically relevant flow regime. The flow regime is defined by a set of parameters, called Indicators of Hydrologic Alteration. These parameters are predicted at the catchment scale by a hydrologic model, called Soil and Water Assessment Tool. Then the Maximum Entropy Ordered Weighted Averaging method is employed to aggregate non-commensurable biologically relevant flow regimes to develop hydro-ecological- index at the catchment scale. The resulting index reflects the variability of the need of the riverine ecosystem at catchment scale and thus different catchments can be evaluated and compared.
Physical and biochemical properties of apple orchard soils of different productivities (orchard A... more Physical and biochemical properties of apple orchard soils of different productivities (orchard A: 30 t·ha-1; orchard B: 20 t·ha-1) were analyzed. Most of the physical properties were similar in both orchards. In orchard A, the horizontal saturated hydraulic conductivity at 10-cm depth was 16.42 cm·day-1, and was about four times higher than that in orchard B (4.41 cm·day-1). Total carbon, total nitrogen, and total phosphorus were about two times higher in orchard B soil, whereas total potassium, bacterial biomass, nitrification, and phosphorus mineralization activities were similar in both orchards. Excess nutrients accumulated on the top 15 cm layer of orchard B soil because the topographical and physical conditions were associated with reduced apple productivity. Appropriate management of fallen leaves and reduction of chemical fertilizer seem necessary for a high level of apple productivity.
Uploads
Papers by Scirp Math-Physics
Microbiology by Scirp Math-Physics
environmental science by Scirp Math-Physics