Stefanie Eisenmann, Eszter Bánffy, Peter van Dommelen, Kerstin P. Hofmann, Joseph Maran, Iosif Lazaridis, Alissa Mittnik, Michael McCormick, Johannes Krause, David Reich, Philipp W. Stockhammer, 2018
Genome-wide ancient DNA analysis of skeletons retrieved from archaeological excavations has provi... more Genome-wide ancient DNA analysis of skeletons retrieved from archaeological excavations has provided a powerful new tool for the investigation of past populations and migrations. An important objective for the coming years is to properly integrate ancient genomics into archaeological research. This article aims to contribute to developing a better understanding and cooperation between the two disciplines and beyond. It focuses on the question of how best to name clusters encountered when analysing the genetic makeup of past human populations. Recent studies have frequently borrowed archaeological cultural designations to name these genetic groups, while neglecting the historically problematic nature of the concept of cultures in archaeology. After reviewing current practices in naming genetic clusters, we introduce three possible nomenclature systems (‘numeric system’, ‘mixed system (a)’, ‘geographic-temporal system’) along with their advantages and challenges.
Uploads
Papers by Alissa Mittnik
Abstract
From around 2750 to 2500 BC, Bell Beaker pottery became widespread across western and central Europe, before it disappeared between 2200 and 1800 BC. The forces that propelled its expansion are a matter of long-standing debate, and there is support for both cultural diffusion and migration having a role in this process. Here we present genome-wide data from 400 Neolithic, Copper Age and Bronze Age Europeans, including 226 individuals associated with Beaker-complex artefacts. We detected limited genetic affinity between Beaker-complex-associated individuals from Iberia and central Europe, and thus exclude migration as an important mechanism of spread between these two regions. However, migration had a key role in the further dissemination of the Beaker complex. We document this phenomenon most clearly in Britain, where the spread of the Beaker complex introduced high levels of steppe-related ancestry and was associated with the replacement of approximately 90% of Britain’s gene pool within a few hundred years, continuing the east-to-west expansion that had brought steppe-related ancestry into central and northern Europe over the previous centuries.
Abstract
From around 2750 to 2500 BC, Bell Beaker pottery became widespread across western and central Europe, before it disappeared between 2200 and 1800 BC. The forces that propelled its expansion are a matter of long-standing debate, and there is support for both cultural diffusion and migration having a role in this process. Here we present genome-wide data from 400 Neolithic, Copper Age and Bronze Age Europeans, including 226 individuals associated with Beaker-complex artefacts. We detected limited genetic affinity between Beaker-complex-associated individuals from Iberia and central Europe, and thus exclude migration as an important mechanism of spread between these two regions. However, migration had a key role in the further dissemination of the Beaker complex. We document this phenomenon most clearly in Britain, where the spread of the Beaker complex introduced high levels of steppe-related ancestry and was associated with the replacement of approximately 90% of Britain’s gene pool within a few hundred years, continuing the east-to-west expansion that had brought steppe-related ancestry into central and northern Europe over the previous centuries.