A candidate vaccine to prevent human schistosomiasis is under development. The vaccine is compris... more A candidate vaccine to prevent human schistosomiasis is under development. The vaccine is comprised of a recombinant 9 kDa antigen protein corresponding to the large extracellular domain of a tetraspanin surface antigen protein of Schistosoma mansoni, Sm-TSP-2. Here, we describe the biophysical profile of the purified, recombinant Sm-TSP-2 produced in the yeast PichiaPink, which in preclinical studies in mice was shown to be an effective vaccine against intestinal schistosomiasis. Biophysical techniques including circular dichroism, intrinsic and extrinsic fluorescence and light scattering were employed to generate an empirical phase diagram, a color based map of the physical stability of the vaccine antigen over a wide range of temperatures and pH. From these studies a pH range of 6.0-8.0 was determined to be optimal for maintaining the stability and conformation of the protein at temperatures up to 25 °C. Sorbitol, sucrose and trehalose were selected as excipients that prevented physical degradation during storage. The studies described here provide guidance for maximizing the stability of soluble recombinant Sm-TSP-2 in preparation of its further development as a vaccine.
Na-APR-1(M74) is an aspartic protease that is rendered enzymatically inactive by site-directed mu... more Na-APR-1(M74) is an aspartic protease that is rendered enzymatically inactive by site-directed mutagenesis and is a candidate antigen component in the Human Hookworm Vaccine. The mutant protease exerts vaccine efficacy by inducing antibodies that neutralize the enzymatic activity of wild type enzyme (Na-APR-1wt) in the gut of the hookworm, thereby depriving the worm of its ability to digest its blood meal. Previously, canines immunized with Na-APR-1(M74) and challenged with Ancylostoma caninum were partially protected against hookworm challenge infection, especially from the loss in hemoglobin observed in control canines and canine immunoglobulin (Ig) G raised against Na-APR-1 was shown to inhibit the enzymatic activity of Na-APR-1 wt in vitro, thereby providing proof of concept of Na-APR-1(M74) as a vaccine antigen. The mutated version, Na-APR-1(M74), was then expressed at the cGMP level using a Nicotiana benthamiana expression system (Fraunhofer, CMB, Delaware, MD), formulated with Alhydrogel®, and used to immunize mice in a dose-ranging study to explore the enzyme-neutralizing capacity of the resulting anti- Na-APR-1(M74) IgG. As little as 0.99 μg of recombinant Na-APR-1(M74) could induce anti Na-APR-1(M74) IgG in mice that were capable of inhibiting Na-APR-1w t-mediated digestion of a peptide substrate by 89%. In the absence of enzymatic activity of Na-APR-1(M74) as a surrogate marker of protein functionality, we developed an assay based on the binding of a quenched fluorescence-labeled inhibitor of aspartic proteases, BODIPY-FL pepstatin A (BDP). Binding of BDP in the active site of Na-APR-1 wt was demonstrated by inhibition of enzymatic activity, and competitive binding with unlabelled pepstatin A. BDP also bound to Na-APR-1(M74) which was assessed by fluorescence polarization, but with an ∼ 50-fold reduction in the dissociation constant. Taken together, these assays comprise a "toolbox" that could be useful for the analyses of Na-APR-1(M74) as it proceeds through the clinical development as part of the Human Hookworm Vaccine pipeline.
The American journal of tropical medicine and hygiene, Jan 23, 2015
Trypanosoma cruzi causes life-long disease after infection and leads to cardiac disease in 30% of... more Trypanosoma cruzi causes life-long disease after infection and leads to cardiac disease in 30% of infected individuals. After infection, the parasites are readily detectable in the blood during the first few days before disseminating to infect numerous cell types. Preliminary data suggested that the Tc24 protein that localizes to the T. cruzi membrane during all life stages possesses B-cell superantigenic properties. These antigens facilitate immune escape by interfering with antibody-mediated responses, particularly the avoidance of catalytic antibodies. These antibodies are an innate host defense mechanism present in the naive repertoire, and catalytic antibody-antigen binding results in hydrolysis of the target. We tested the B-cell superantigenic properties of Tc24 by comparing the degree of Tc24 hydrolysis by IgM purified from either Tc24 unexposed or exposed mice and humans. Respective samples were subjected to sodium dodecyl sulfate polyacrylamide gel electrophoresis, silver ...
Tropical medicine & international health : TM & IH, 2015
To identify immunodominant antigens of Toxocara canis recognized by Toxocara-infected sera as rec... more To identify immunodominant antigens of Toxocara canis recognized by Toxocara-infected sera as recombinant reagents for immunodiagnosis of toxocariasis.. Pooled sera from human cases of toxocariasis were used to identify immunodominant antigens by immunoscreening a T. canis larval expression cDNA library. The positive clones were sequenced to reveal the identity of the antigens. The recombinant proteins were expressed in E. coli and then used to confirm their immunoreaction with sera of humans with toxocariasis. Two chosen antigens were also used to differentiate Toxocara infection from other helminth infections in mice. 11 antigens with immunodiagnostic potential were identified, including two C-type lectins (CTLs) that reacted strongly with the Toxocara-positive serum pool. The first CTL (Tc-CTL-1) is the same as TES-32, previously identified as a major immunodominant component of TES; the second CTL (Tc-CTL-2) is a novel C-type lectin sharing 83% amino acid sequence identity withi...
The 2000 Millennium Development Goals helped stimulate the development of life-saving childhood v... more The 2000 Millennium Development Goals helped stimulate the development of life-saving childhood vaccines for pneumococcal and rotavirus infections while greatly expanding coverage of existing vaccines. However, there remains an urgent need to develop new vaccines for HIV/AIDS, malaria, and tuberculosis, as well as for respiratory syncytial virus and those chronic and debilitating (mostly parasitic) infections known as neglected tropical diseases (NTDs). The NTDs represent the most common diseases of people living in extreme poverty and are the subject of this review. The development of NTD vaccines, including those for hookworm infection, schistosomiasis, leishmaniasis, and Chagas disease, is being led by nonprofit product development partnerships (PDPs) working in consortia of academic and industrial partners, including vaccine manufacturers in developing countries. NTD vaccines face unique challenges with respect to their product development and manufacture, as well as their preclinical and clinical testing. We emphasize global efforts to accelerate the development of NTD vaccines and some of the hurdles to ensuring their availability to the world's poorest people. Expected final online publication date for the Annual Review of Medicine Volume 67 is January 14, 2016. Please see http://www.annualreviews.org/catalog/pubdates.aspx for revised estimates.
The Tc24 calcium binding protein from the flagellar pocket of Trypanosoma cruzi is under evaluati... more The Tc24 calcium binding protein from the flagellar pocket of Trypanosoma cruzi is under evaluation as a candidate vaccine antigen against Chagas disease. Previously, a DNA vaccine encoding Tc24 was shown to be an effective vaccine (both as a preventive and therapeutic intervention) in mice and dogs, as evidenced by reductions in T. cruzi parasitemia and cardiac amastigotes, as well as reduced cardiac inflammation and increased host survival. Here we developed a suitable platform for the large scale production of recombinant Tc24 (rTc24) and show that when rTc24 is combined with a monophosphoryl-lipid A (MPLA) adjuvant, the formulated vaccine induces a Th1-biased immune response in mice, comprised of elevated IgG2a antibody levels and interferon-gamma levels from splenocytes, compared to controls. These immune responses also resulted in statistically significant decreased T. cruzi parasitemia and cardiac amastigotes, as well as increased survival following T. cruzi challenge infections, compared to controls. Partial protective efficacy was shown regardless of whether the antigen was expressed in Escherichia coli or in yeast (Pichia pastoris). While mouse vaccinations will require further modifications in order to optimize protective efficacy, such studies provide a basis for further evaluations of vaccines comprised of rTc24, together with alternative adjuvants and additional recombinant antigens.
Na-APR-1M74 is an aspartic protease that is rendered enzymatically inactive by site-directed muta... more Na-APR-1M74 is an aspartic protease that is rendered enzymatically inactive by site-directed mutagenesis and is a candidate antigen component in the Human Hookworm Vaccine. The mutant protease exerts vaccine efficacy by inducing antibodies that neutralize the enzymatic activity of wild type enzyme (Na-APR-1wt) in the gut of the hookworm, thereby depriving the worm of its ability to digest its blood meal. Previously, canines immunized with Na-APR-1M74 and challenged with Ancylostoma caninum were partially protected against hookworm challenge infection, especially from the loss in hemoglobin observed in control canines and canine immunoglobulin (Ig) G raised against Na-APR-1 was shown to inhibit the enzymatic activity of Na-APR-1wt in vitro, thereby providing proof of concept of Na-APR-1M74 as a vaccine antigen. The mutated version, Na-APR-1M74, was then expressed at the cGMP level using a Nicotiana benthamiana expression system (Fraunhofer, CMB, Delaware, MD), formulated with Alhydro...
Chagas disease (American trypanosomiasis caused by Trypanosoma cruzi) is one of the most importan... more Chagas disease (American trypanosomiasis caused by Trypanosoma cruzi) is one of the most important neglected tropical diseases in the Western Hemisphere. The toxicities and limited efficacies of current antitrypanosomal drugs have prompted a search for alternative technologies such as a therapeutic vaccine comprised of T. cruzi antigens, including a recombinant antigen encoding the N-terminal 65 kDa portion of Trypomastigote surface antigen-1 (TSA-1). With at least six known genetically distinct T. cruzi lineages, variability between the different lineages poses a unique challenge for the development of broadly effective therapeutic vaccine. The variability across the major lineages in the current vaccine candidate antigen TSA-1 has not previously been addressed. To assess the variation in TSA-1, we cloned and sequenced TSA-1 from several different T. cruzi strains representing three of the most clinically relevant lineages. Analysis of the different alleles showed limited variation...
A candidate vaccine to prevent human schistosomiasis is under development. The vaccine is compris... more A candidate vaccine to prevent human schistosomiasis is under development. The vaccine is comprised of a recombinant 9 kDa antigen protein corresponding to the large extracellular domain of a tetraspanin surface antigen protein of Schistosoma mansoni, Sm-TSP-2. Here, we describe the biophysical profile of the purified, recombinant Sm-TSP-2 produced in the yeast PichiaPink, which in preclinical studies in mice was shown to be an effective vaccine against intestinal schistosomiasis. Biophysical techniques including circular dichroism, intrinsic and extrinsic fluorescence and light scattering were employed to generate an empirical phase diagram, a color based map of the physical stability of the vaccine antigen over a wide range of temperatures and pH. From these studies a pH range of 6.0-8.0 was determined to be optimal for maintaining the stability and conformation of the protein at temperatures up to 25 °C. Sorbitol, sucrose and trehalose were selected as excipients that prevented p...
Acta crystallographica. Section F, Structural biology and crystallization communications, 2010
Glioma pathogenesis-related protein 1 (GLIPR1) is a member of the CAP superfamily that includes p... more Glioma pathogenesis-related protein 1 (GLIPR1) is a member of the CAP superfamily that includes proteins from a wide range of eukaryotic organisms. The biological functions of most CAP proteins, including GLIPR1, are unclear. GLIPR1 is up-regulated in aggressive glioblastomas and contributes to the invasiveness of cultured glioblastoma cells. In contrast, decreased GLIPR1 expression is associated with advanced prostate cancer. Forced GLIPR1 overexpression is pro-apoptotic in prostate cancer cells and is being tested in clinical trials as an experimental prostate-cancer therapy. Human GLIPR1 was expressed as a truncated soluble protein (sGLIPR1), purified and crystallized. Useful X-ray data have been collected to beyond 1.9 Å resolution from a crystal that belonged to the orthorhombic space group P2(1)2(1)2 with average unit-cell parameters a = 85.1, b = 79.5, c = 38.9 Å and either a monomer or dimer in the asymmetric unit.
Soluble mitogens and adhesion-dependent organization of the actin cytoskeleton are required for c... more Soluble mitogens and adhesion-dependent organization of the actin cytoskeleton are required for cells to enter S phase in fibroblasts. The induction of cyclin A is also required for S-phase entry, and we now report that distinct effects of mitogens and the actin cytoskeleton on the phosphorylation of CREB and pocket proteins regulate the extent and timing of cyclin A promoter activity, respectively. First, we show that CREB phosphorylation and binding to the cyclic AMP response element (CRE) determines the extent, but not the timing, of cyclin A promoter activity. Second, we show that pocket protein inactivation regulates the timing, but not the extent, of cyclin A promoter activity. CREB phosphorylation and CRE occupancy are regulated by soluble mitogens alone, while the phosphorylation of pocket proteins requires both mitogens and the organized actin cytoskeleton. Mechanistically, cytoskeletal integrity controls pocket protein phosphorylation by allowing for sustained ERK signalin...
A bivalent recombinant vaccine for human hookworm disease is under development. One of the lead c... more A bivalent recombinant vaccine for human hookworm disease is under development. One of the lead candidate antigens in the vaccine is a glutathione S-transferase cloned from the hookworm Necator americanus (Na-GST-1) which is expressed in the yeast Pichia pastoris. Based on preliminary studies demonstrating that the recombinant protein was not stable in an acetate buffer at pH 6, we undertook an extensive stability analysis of the molecule. To improve and optimize stability we complemented traditional methods employed for macromolecule and vaccine stabilization with biophysical techniques that were incorporated into a systematic process based on an eigenvector approach. Large data sets, obtained from a variety of experimental methods were used to establish a color map ("empirical phase diagram") of the physical stability of the vaccine antigen over a wide range of temperature and pH. The resulting map defined "apparent phase boundaries" that were used to develop h...
Over the next decade, a new generation of vaccines will target the neglected tropical diseases (N... more Over the next decade, a new generation of vaccines will target the neglected tropical diseases (NTDs). The goal of most NTD vaccines will be to reduce the morbidity and decrease the chronic debilitating nature of these often-forgotten infections -outcomes that are hard to measure in the traditional potency-testing paradigm. The absence of measurable correlates of protection, a lack of permissive animal models for lethal infection, and a lack of clinical indications that do not include the induction of sterilizing immunity required us to reconsider the traditional bioassay methods for determining vaccine potency. Owing to these limitations, potency assay design for NTD vaccines will increasingly rely on a paradigm where potency testing is one among many tools to ensure that a manufacturing process yields a product of consistent quality. This potency test is a bioassay using BALB/c mice, which evaluates the immunogenicity of the vaccine at set time interval post manufacture. Herein, we discuss the results of 12 month potency testing of Necator americanusglutathione-S-transferase-1 (Na-GST-1) vaccine. The Effective Dose 50 (ED50), with its 95% fiducial limits (FL) for each time point was determined along with the Relative Potency with its 95% FL for 3, 6, 9 and 12 months post manufacture. Potency testing has shown that storage at 4° C decreases the ED50 and increases the relative potency of Na-GST-1 vaccine. We proposed that the change in ED50 and relative potency coincide with higher affinity binding of the Na-GST-1 to the Alhydrogel® that occurred during storage at 4° C. These preclinical results lay the foundation for moving forward with Phase 1 clinical trial in Brazil.
Advances in Experimental Medicine and Biology, 2005
The major soil-transmitted helminth (STH) infections, ascariasis, trichuriasis, and hookworm infe... more The major soil-transmitted helminth (STH) infections, ascariasis, trichuriasis, and hookworm infection, together with schistosomiasis, occur in an estimated 2 bil-lion people in the developing countries (de Silva et al., 2003; Hotez et al., 2006). It has been suggested that the STHs ...
Advances in experimental medicine and biology, 2013
An estimated 100 million people in the Latin American and Caribbean (LAC) region live on less tha... more An estimated 100 million people in the Latin American and Caribbean (LAC) region live on less than US$2 per day, while another 46 million people in the US live below that nation's poverty line. Almost all of the 'bottom 100 million' people suffer from at least one neglected tropical disease (NTD), including one-half of the poorest people in the region infected with hookworms, 10% with Chagas disease, and up to 1-2% with dengue, schistosomiasis, and/or leishmaniasis. In the US, NTDs such as Chagas disease, cysticercosis, toxocariasis, and trichomoniasis are also common among poor populations. These NTDs trap the poorest people in the region in poverty, because of their impact on maternal and child health, and occupational productivity. Through mass drug administration (MDA), several NTDs are on the verge of elimination in the Americas, including lymphatic filariasis, onchocerciasis, trachoma, and possibly leprosy. In addition, schistosomiasis may soon be eliminated in the...
Infection by the human hookworm Necator americanus is a leading cause of anemia and disability in... more Infection by the human hookworm Necator americanus is a leading cause of anemia and disability in the developing countries of Africa, Asia, and the Americas. In order to prevent childhood hookworm disease in resource poor settings, a recombinant vaccine is under development by the Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development, a Product Development Partnership (PDP). Previously, we reported on the expression and purification of a highly promising hookworm vaccine candidate, Na-GST-1, an N. americanus glutathione s-transferase expressed in Pichia pastoris (yeast), which led to production of 1.5 g of 95% pure recombinant protein at a 20L scale. (1) (,) (2) (,) (3) This yield and purity of Na-GST-1 was sufficient for early pilot manufacturing and initial phase 1 clinical testing. However, based on the number of doses which would be required to allow mass vaccination and a potential goal to deliver a vaccine as inexpensively as possible, a higher yield of expression of the recombinant antigen at the lowest possible cost is highly desirable. Here we report on modifications to the fermentation (upstream process) of the antigen expressed in P. pastoris, and to the purification (downstream process) of the recombinant protein that allowed for a 2-3-fold improvement in the final yield of Na-GST-1 purified protein. The major improvements included upstream process changes such as the addition of a sorbitol pulse and co-feed during methanol induction as well as an extension of the induction stage to approximately 96 hours; downstream process changes included modifying the UFDF to flat sheet with a 10 kDa Molecular Weight cut-off (MWCO), adjusting the capacity of an ion-exchange chromatography step utilizing a gradient elution as opposed to the original step elution, and altering the hydrophobic interaction chromatography conditions. The full process, as well as the purity and stability profiles of the target Na-GST-1, and its formulation on Alhydrogel(®), is described.
A candidate vaccine to prevent human schistosomiasis is under development. The vaccine is compris... more A candidate vaccine to prevent human schistosomiasis is under development. The vaccine is comprised of a recombinant 9 kDa antigen protein corresponding to the large extracellular domain of a tetraspanin surface antigen protein of Schistosoma mansoni, Sm-TSP-2. Here, we describe the biophysical profile of the purified, recombinant Sm-TSP-2 produced in the yeast PichiaPink, which in preclinical studies in mice was shown to be an effective vaccine against intestinal schistosomiasis. Biophysical techniques including circular dichroism, intrinsic and extrinsic fluorescence and light scattering were employed to generate an empirical phase diagram, a color based map of the physical stability of the vaccine antigen over a wide range of temperatures and pH. From these studies a pH range of 6.0-8.0 was determined to be optimal for maintaining the stability and conformation of the protein at temperatures up to 25 °C. Sorbitol, sucrose and trehalose were selected as excipients that prevented physical degradation during storage. The studies described here provide guidance for maximizing the stability of soluble recombinant Sm-TSP-2 in preparation of its further development as a vaccine.
Na-APR-1(M74) is an aspartic protease that is rendered enzymatically inactive by site-directed mu... more Na-APR-1(M74) is an aspartic protease that is rendered enzymatically inactive by site-directed mutagenesis and is a candidate antigen component in the Human Hookworm Vaccine. The mutant protease exerts vaccine efficacy by inducing antibodies that neutralize the enzymatic activity of wild type enzyme (Na-APR-1wt) in the gut of the hookworm, thereby depriving the worm of its ability to digest its blood meal. Previously, canines immunized with Na-APR-1(M74) and challenged with Ancylostoma caninum were partially protected against hookworm challenge infection, especially from the loss in hemoglobin observed in control canines and canine immunoglobulin (Ig) G raised against Na-APR-1 was shown to inhibit the enzymatic activity of Na-APR-1 wt in vitro, thereby providing proof of concept of Na-APR-1(M74) as a vaccine antigen. The mutated version, Na-APR-1(M74), was then expressed at the cGMP level using a Nicotiana benthamiana expression system (Fraunhofer, CMB, Delaware, MD), formulated with Alhydrogel®, and used to immunize mice in a dose-ranging study to explore the enzyme-neutralizing capacity of the resulting anti- Na-APR-1(M74) IgG. As little as 0.99 μg of recombinant Na-APR-1(M74) could induce anti Na-APR-1(M74) IgG in mice that were capable of inhibiting Na-APR-1w t-mediated digestion of a peptide substrate by 89%. In the absence of enzymatic activity of Na-APR-1(M74) as a surrogate marker of protein functionality, we developed an assay based on the binding of a quenched fluorescence-labeled inhibitor of aspartic proteases, BODIPY-FL pepstatin A (BDP). Binding of BDP in the active site of Na-APR-1 wt was demonstrated by inhibition of enzymatic activity, and competitive binding with unlabelled pepstatin A. BDP also bound to Na-APR-1(M74) which was assessed by fluorescence polarization, but with an ∼ 50-fold reduction in the dissociation constant. Taken together, these assays comprise a "toolbox" that could be useful for the analyses of Na-APR-1(M74) as it proceeds through the clinical development as part of the Human Hookworm Vaccine pipeline.
The American journal of tropical medicine and hygiene, Jan 23, 2015
Trypanosoma cruzi causes life-long disease after infection and leads to cardiac disease in 30% of... more Trypanosoma cruzi causes life-long disease after infection and leads to cardiac disease in 30% of infected individuals. After infection, the parasites are readily detectable in the blood during the first few days before disseminating to infect numerous cell types. Preliminary data suggested that the Tc24 protein that localizes to the T. cruzi membrane during all life stages possesses B-cell superantigenic properties. These antigens facilitate immune escape by interfering with antibody-mediated responses, particularly the avoidance of catalytic antibodies. These antibodies are an innate host defense mechanism present in the naive repertoire, and catalytic antibody-antigen binding results in hydrolysis of the target. We tested the B-cell superantigenic properties of Tc24 by comparing the degree of Tc24 hydrolysis by IgM purified from either Tc24 unexposed or exposed mice and humans. Respective samples were subjected to sodium dodecyl sulfate polyacrylamide gel electrophoresis, silver ...
Tropical medicine & international health : TM & IH, 2015
To identify immunodominant antigens of Toxocara canis recognized by Toxocara-infected sera as rec... more To identify immunodominant antigens of Toxocara canis recognized by Toxocara-infected sera as recombinant reagents for immunodiagnosis of toxocariasis.. Pooled sera from human cases of toxocariasis were used to identify immunodominant antigens by immunoscreening a T. canis larval expression cDNA library. The positive clones were sequenced to reveal the identity of the antigens. The recombinant proteins were expressed in E. coli and then used to confirm their immunoreaction with sera of humans with toxocariasis. Two chosen antigens were also used to differentiate Toxocara infection from other helminth infections in mice. 11 antigens with immunodiagnostic potential were identified, including two C-type lectins (CTLs) that reacted strongly with the Toxocara-positive serum pool. The first CTL (Tc-CTL-1) is the same as TES-32, previously identified as a major immunodominant component of TES; the second CTL (Tc-CTL-2) is a novel C-type lectin sharing 83% amino acid sequence identity withi...
The 2000 Millennium Development Goals helped stimulate the development of life-saving childhood v... more The 2000 Millennium Development Goals helped stimulate the development of life-saving childhood vaccines for pneumococcal and rotavirus infections while greatly expanding coverage of existing vaccines. However, there remains an urgent need to develop new vaccines for HIV/AIDS, malaria, and tuberculosis, as well as for respiratory syncytial virus and those chronic and debilitating (mostly parasitic) infections known as neglected tropical diseases (NTDs). The NTDs represent the most common diseases of people living in extreme poverty and are the subject of this review. The development of NTD vaccines, including those for hookworm infection, schistosomiasis, leishmaniasis, and Chagas disease, is being led by nonprofit product development partnerships (PDPs) working in consortia of academic and industrial partners, including vaccine manufacturers in developing countries. NTD vaccines face unique challenges with respect to their product development and manufacture, as well as their preclinical and clinical testing. We emphasize global efforts to accelerate the development of NTD vaccines and some of the hurdles to ensuring their availability to the world's poorest people. Expected final online publication date for the Annual Review of Medicine Volume 67 is January 14, 2016. Please see http://www.annualreviews.org/catalog/pubdates.aspx for revised estimates.
The Tc24 calcium binding protein from the flagellar pocket of Trypanosoma cruzi is under evaluati... more The Tc24 calcium binding protein from the flagellar pocket of Trypanosoma cruzi is under evaluation as a candidate vaccine antigen against Chagas disease. Previously, a DNA vaccine encoding Tc24 was shown to be an effective vaccine (both as a preventive and therapeutic intervention) in mice and dogs, as evidenced by reductions in T. cruzi parasitemia and cardiac amastigotes, as well as reduced cardiac inflammation and increased host survival. Here we developed a suitable platform for the large scale production of recombinant Tc24 (rTc24) and show that when rTc24 is combined with a monophosphoryl-lipid A (MPLA) adjuvant, the formulated vaccine induces a Th1-biased immune response in mice, comprised of elevated IgG2a antibody levels and interferon-gamma levels from splenocytes, compared to controls. These immune responses also resulted in statistically significant decreased T. cruzi parasitemia and cardiac amastigotes, as well as increased survival following T. cruzi challenge infections, compared to controls. Partial protective efficacy was shown regardless of whether the antigen was expressed in Escherichia coli or in yeast (Pichia pastoris). While mouse vaccinations will require further modifications in order to optimize protective efficacy, such studies provide a basis for further evaluations of vaccines comprised of rTc24, together with alternative adjuvants and additional recombinant antigens.
Na-APR-1M74 is an aspartic protease that is rendered enzymatically inactive by site-directed muta... more Na-APR-1M74 is an aspartic protease that is rendered enzymatically inactive by site-directed mutagenesis and is a candidate antigen component in the Human Hookworm Vaccine. The mutant protease exerts vaccine efficacy by inducing antibodies that neutralize the enzymatic activity of wild type enzyme (Na-APR-1wt) in the gut of the hookworm, thereby depriving the worm of its ability to digest its blood meal. Previously, canines immunized with Na-APR-1M74 and challenged with Ancylostoma caninum were partially protected against hookworm challenge infection, especially from the loss in hemoglobin observed in control canines and canine immunoglobulin (Ig) G raised against Na-APR-1 was shown to inhibit the enzymatic activity of Na-APR-1wt in vitro, thereby providing proof of concept of Na-APR-1M74 as a vaccine antigen. The mutated version, Na-APR-1M74, was then expressed at the cGMP level using a Nicotiana benthamiana expression system (Fraunhofer, CMB, Delaware, MD), formulated with Alhydro...
Chagas disease (American trypanosomiasis caused by Trypanosoma cruzi) is one of the most importan... more Chagas disease (American trypanosomiasis caused by Trypanosoma cruzi) is one of the most important neglected tropical diseases in the Western Hemisphere. The toxicities and limited efficacies of current antitrypanosomal drugs have prompted a search for alternative technologies such as a therapeutic vaccine comprised of T. cruzi antigens, including a recombinant antigen encoding the N-terminal 65 kDa portion of Trypomastigote surface antigen-1 (TSA-1). With at least six known genetically distinct T. cruzi lineages, variability between the different lineages poses a unique challenge for the development of broadly effective therapeutic vaccine. The variability across the major lineages in the current vaccine candidate antigen TSA-1 has not previously been addressed. To assess the variation in TSA-1, we cloned and sequenced TSA-1 from several different T. cruzi strains representing three of the most clinically relevant lineages. Analysis of the different alleles showed limited variation...
A candidate vaccine to prevent human schistosomiasis is under development. The vaccine is compris... more A candidate vaccine to prevent human schistosomiasis is under development. The vaccine is comprised of a recombinant 9 kDa antigen protein corresponding to the large extracellular domain of a tetraspanin surface antigen protein of Schistosoma mansoni, Sm-TSP-2. Here, we describe the biophysical profile of the purified, recombinant Sm-TSP-2 produced in the yeast PichiaPink, which in preclinical studies in mice was shown to be an effective vaccine against intestinal schistosomiasis. Biophysical techniques including circular dichroism, intrinsic and extrinsic fluorescence and light scattering were employed to generate an empirical phase diagram, a color based map of the physical stability of the vaccine antigen over a wide range of temperatures and pH. From these studies a pH range of 6.0-8.0 was determined to be optimal for maintaining the stability and conformation of the protein at temperatures up to 25 °C. Sorbitol, sucrose and trehalose were selected as excipients that prevented p...
Acta crystallographica. Section F, Structural biology and crystallization communications, 2010
Glioma pathogenesis-related protein 1 (GLIPR1) is a member of the CAP superfamily that includes p... more Glioma pathogenesis-related protein 1 (GLIPR1) is a member of the CAP superfamily that includes proteins from a wide range of eukaryotic organisms. The biological functions of most CAP proteins, including GLIPR1, are unclear. GLIPR1 is up-regulated in aggressive glioblastomas and contributes to the invasiveness of cultured glioblastoma cells. In contrast, decreased GLIPR1 expression is associated with advanced prostate cancer. Forced GLIPR1 overexpression is pro-apoptotic in prostate cancer cells and is being tested in clinical trials as an experimental prostate-cancer therapy. Human GLIPR1 was expressed as a truncated soluble protein (sGLIPR1), purified and crystallized. Useful X-ray data have been collected to beyond 1.9 Å resolution from a crystal that belonged to the orthorhombic space group P2(1)2(1)2 with average unit-cell parameters a = 85.1, b = 79.5, c = 38.9 Å and either a monomer or dimer in the asymmetric unit.
Soluble mitogens and adhesion-dependent organization of the actin cytoskeleton are required for c... more Soluble mitogens and adhesion-dependent organization of the actin cytoskeleton are required for cells to enter S phase in fibroblasts. The induction of cyclin A is also required for S-phase entry, and we now report that distinct effects of mitogens and the actin cytoskeleton on the phosphorylation of CREB and pocket proteins regulate the extent and timing of cyclin A promoter activity, respectively. First, we show that CREB phosphorylation and binding to the cyclic AMP response element (CRE) determines the extent, but not the timing, of cyclin A promoter activity. Second, we show that pocket protein inactivation regulates the timing, but not the extent, of cyclin A promoter activity. CREB phosphorylation and CRE occupancy are regulated by soluble mitogens alone, while the phosphorylation of pocket proteins requires both mitogens and the organized actin cytoskeleton. Mechanistically, cytoskeletal integrity controls pocket protein phosphorylation by allowing for sustained ERK signalin...
A bivalent recombinant vaccine for human hookworm disease is under development. One of the lead c... more A bivalent recombinant vaccine for human hookworm disease is under development. One of the lead candidate antigens in the vaccine is a glutathione S-transferase cloned from the hookworm Necator americanus (Na-GST-1) which is expressed in the yeast Pichia pastoris. Based on preliminary studies demonstrating that the recombinant protein was not stable in an acetate buffer at pH 6, we undertook an extensive stability analysis of the molecule. To improve and optimize stability we complemented traditional methods employed for macromolecule and vaccine stabilization with biophysical techniques that were incorporated into a systematic process based on an eigenvector approach. Large data sets, obtained from a variety of experimental methods were used to establish a color map ("empirical phase diagram") of the physical stability of the vaccine antigen over a wide range of temperature and pH. The resulting map defined "apparent phase boundaries" that were used to develop h...
Over the next decade, a new generation of vaccines will target the neglected tropical diseases (N... more Over the next decade, a new generation of vaccines will target the neglected tropical diseases (NTDs). The goal of most NTD vaccines will be to reduce the morbidity and decrease the chronic debilitating nature of these often-forgotten infections -outcomes that are hard to measure in the traditional potency-testing paradigm. The absence of measurable correlates of protection, a lack of permissive animal models for lethal infection, and a lack of clinical indications that do not include the induction of sterilizing immunity required us to reconsider the traditional bioassay methods for determining vaccine potency. Owing to these limitations, potency assay design for NTD vaccines will increasingly rely on a paradigm where potency testing is one among many tools to ensure that a manufacturing process yields a product of consistent quality. This potency test is a bioassay using BALB/c mice, which evaluates the immunogenicity of the vaccine at set time interval post manufacture. Herein, we discuss the results of 12 month potency testing of Necator americanusglutathione-S-transferase-1 (Na-GST-1) vaccine. The Effective Dose 50 (ED50), with its 95% fiducial limits (FL) for each time point was determined along with the Relative Potency with its 95% FL for 3, 6, 9 and 12 months post manufacture. Potency testing has shown that storage at 4° C decreases the ED50 and increases the relative potency of Na-GST-1 vaccine. We proposed that the change in ED50 and relative potency coincide with higher affinity binding of the Na-GST-1 to the Alhydrogel® that occurred during storage at 4° C. These preclinical results lay the foundation for moving forward with Phase 1 clinical trial in Brazil.
Advances in Experimental Medicine and Biology, 2005
The major soil-transmitted helminth (STH) infections, ascariasis, trichuriasis, and hookworm infe... more The major soil-transmitted helminth (STH) infections, ascariasis, trichuriasis, and hookworm infection, together with schistosomiasis, occur in an estimated 2 bil-lion people in the developing countries (de Silva et al., 2003; Hotez et al., 2006). It has been suggested that the STHs ...
Advances in experimental medicine and biology, 2013
An estimated 100 million people in the Latin American and Caribbean (LAC) region live on less tha... more An estimated 100 million people in the Latin American and Caribbean (LAC) region live on less than US$2 per day, while another 46 million people in the US live below that nation's poverty line. Almost all of the 'bottom 100 million' people suffer from at least one neglected tropical disease (NTD), including one-half of the poorest people in the region infected with hookworms, 10% with Chagas disease, and up to 1-2% with dengue, schistosomiasis, and/or leishmaniasis. In the US, NTDs such as Chagas disease, cysticercosis, toxocariasis, and trichomoniasis are also common among poor populations. These NTDs trap the poorest people in the region in poverty, because of their impact on maternal and child health, and occupational productivity. Through mass drug administration (MDA), several NTDs are on the verge of elimination in the Americas, including lymphatic filariasis, onchocerciasis, trachoma, and possibly leprosy. In addition, schistosomiasis may soon be eliminated in the...
Infection by the human hookworm Necator americanus is a leading cause of anemia and disability in... more Infection by the human hookworm Necator americanus is a leading cause of anemia and disability in the developing countries of Africa, Asia, and the Americas. In order to prevent childhood hookworm disease in resource poor settings, a recombinant vaccine is under development by the Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development, a Product Development Partnership (PDP). Previously, we reported on the expression and purification of a highly promising hookworm vaccine candidate, Na-GST-1, an N. americanus glutathione s-transferase expressed in Pichia pastoris (yeast), which led to production of 1.5 g of 95% pure recombinant protein at a 20L scale. (1) (,) (2) (,) (3) This yield and purity of Na-GST-1 was sufficient for early pilot manufacturing and initial phase 1 clinical testing. However, based on the number of doses which would be required to allow mass vaccination and a potential goal to deliver a vaccine as inexpensively as possible, a higher yield of expression of the recombinant antigen at the lowest possible cost is highly desirable. Here we report on modifications to the fermentation (upstream process) of the antigen expressed in P. pastoris, and to the purification (downstream process) of the recombinant protein that allowed for a 2-3-fold improvement in the final yield of Na-GST-1 purified protein. The major improvements included upstream process changes such as the addition of a sorbitol pulse and co-feed during methanol induction as well as an extension of the induction stage to approximately 96 hours; downstream process changes included modifying the UFDF to flat sheet with a 10 kDa Molecular Weight cut-off (MWCO), adjusting the capacity of an ion-exchange chromatography step utilizing a gradient elution as opposed to the original step elution, and altering the hydrophobic interaction chromatography conditions. The full process, as well as the purity and stability profiles of the target Na-GST-1, and its formulation on Alhydrogel(®), is described.
Uploads
Papers by Maria Bottazzi